A New Fluorescence-Based Method Identifies Protein Phosphatases Regulating Lipid Droplet Metabolism
نویسندگان
چکیده
In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.
منابع مشابه
Unraveling complexity of interconnected regulatory circuits in lipid metabolism
In this issue of Journal of Biomedical Research, 3 review articles are published that cover a broad range of topics addressing current understanding on regulation of nutrient metabolism through protein phosphatases, homeostatic regulation of cellular lipid droplets by small GTPases, and mechanisms by which hepatic assembly and secretion of triglyceride-rich lipoproteins are regulated. Protein p...
متن کاملLabel-Free Imaging of Lipid Depositions in C. elegans Using Third-Harmonic Generation Microscopy
Elucidation of the molecular mechanisms regulating lipid storage and metabolism is essential for mitigating excess adiposity and obesity, which has been associated with increased prevalence of severe pathological conditions such as cardiovascular disorders and type II diabetes, worldwide. However, imaging fatty acid distribution and dynamics in vivo, at the cellular or organismal level is chall...
متن کاملRegulation of Lipid-Droplet Transport by the Perilipin Homolog LSD2
BACKGROUND Motor-driven transport along microtubules is a primary mechanism for moving and positioning organelles. How such transport is regulated remains poorly understood. For lipid droplets in Drosophila embryos, three distinct phases of transport can be distinguished. To identify factors regulating this transport, we biochemically purified droplets from individual phases and used 2D gel ana...
متن کاملPhospholipase C-Related Catalytically Inactive Protein (PRIP) Regulates Lipolysis in Adipose Tissue by Modulating the Phosphorylation of Hormone-Sensitive Lipase
Phosphorylation of hormone-sensitive lipase (HSL) and perilipin by protein kinase A (PKA) promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP), a binding partner for protein phosphatase ...
متن کاملComplex role of autophagy in regulation of hepatic lipid and lipoprotein metabolism
Discovering new therapeutic interventions to treat lipid and lipoprotein disorders is of great interest and the discovery of autophagy as a regulator of lipid metabolism has opened up new avenues for targeting modulators of this pathway. Autophagy is a degradative process that targets cellular components to the lysosome and recent studies have indicated a role for autophagy in regulating hepati...
متن کامل